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Abstract

In this report we conclude the study initiated in Part I and go on to consider optimal

feedback control (compensator) design for stability augmentation, following the mathematical

formulation developed in Part !. We assume co-located (rmc) sensors and (force and moment)

actuators, and allowing for both sensor and actuator noise, formulate stabilization as a

stochastic regulator problem. Specializing the general theory developed by the author, a

complete, "closed lbrm'" solution, (believed to be new with this report) is obtained, taking

advantage of the fact that the inherent structural damping is light. In particular we are able to

solve in closed form the associated infinite-dimensional steady-state Riccati equations. The

SCOI.E model involves associated partial differential equations in a single space variable, but

ihe compensal_>r design lhcory developed is t'ar nlore general since ii is given in the abstract

wave e(lualion l\_rmuhltioil. Our resulls thus hold for any mullibody syslem so long as the

basic model is linear.





A MATHEMATICAL FORMULATION

OF TIlE SCOLE CONTROL PROBLEM, PART It:

OPTIMAL COMPENSATOR DESIGN

I. Introduction

In this report we conclude the study initiated in Part I [I] and go on to consider optimal

feedback control (compensator) design for stability augmentation, t_311owing the mathema-

tical formulation developed in Part 1. We assume co-located (rate) sensors and (force and

moment) actuatoTS, and allowing for both sensor and actuator noise, formulate stabilization as a

stochastic regulator problem. Specializing the general theory developed in [2] we are able to

obtain a complete, "closed form" solution, (believed to be new with this report) taking advan-

tage of the fact that the inherent structural damping is light. In particular we are able to solve

in closed form the associated infinite-dimensional steady-state Riccati equations. The SCOLE

model involves associated partial differential equations in a single space variable, but the

compensator design theory developed is far more general since it is given in the abstract wave

equation formuldtion. Our results thus hold for any multibody system so long as the basic

model is linear.

The organization is as follows. To make the report self-contained, Section 2 reviews

the flexibIe-structure dynamic equations for a variation of the SCOLE model illustrating in

particular the generating of the abstract Hilbert space wave-equation formulation. The formu-

lation of the stabilization as a stochastic regulator problem in the abstract wave-equation setting

is given in Section 3. The optimal compensator transfer function is derived in Section 4 where

the steady-state Riccati equtions are also solved explicitly. The compensator is shown to

have a simple, easily realized structure as a series of band-pass filters centered at

th_ closed-loop modal frequencies.



_ )'_

2. Review: Structure Equations

We shall derive our rcsuhs using the abstract formuhltion develolwd in I1 I. To illustrate

the generality of this formulation and incidentally also make this report sell comained as much

as possible, we ,,hall re-derive the abstract wave equation formulation for a close variation of

SCOLE where lhe controls are concentrated at the antenna end, and for simplicity, exclude

proof mass controllers. In addition, since we are concerned only with mast stabilization rather

than the antenna _dewing problem we shall neglect the kinematic nonlinearity term as well.

We have then the basic equations for the mast disp]acements %(-), %(.) and uv(. ),

(see [113:

Where

pAi_o(t, s ) + Elou_'"(t, s) = 0 ]

pAi%(t, s) _ Elou_'"(t, s) = 0

pl_iiv(t, s ) - Glvu_'(t, s) = 0

0< t; 0< s.< L (2.1)

the dots represent derivatives with respect to time t and the primes with respect

to the space variable s, as in [11. With the ("clamped") boundary conditions at the shuttle

end (s = 0):

Uo(t, 0) = %(t, 0) = uv(t, 0) = 0 _.
)

,,o(t. 0) = u_(t. 0) = 0

(2.2)

For the controls at the antenna end (s = L) we have:

Elouo"(t.L) = maiJo(t, L) + Fy(t)

)
Eloud"(t,L ) = maiJu(t, I.) + F_(t)

(2.3)

_;here F:,() and F,(') are applied forces. With M._(t) denoting the applied control moment

(3x I vector):

El o ug'(t, L)

El o tqi'(t, L)

GI v tt(_(t, L)

+ l.a(,h -_ _'I,(t) _ 0 (2.4)

where c,)a is the angular velocity defined by:
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(.04 =

k O'(t, L)

it 0' (t, L)

/_q (t, L)

0.5)

and 14 denote the moment of inertia at the antenna end.

It is convenient at this point to make the transition to a more precise the problem formu-

lation by emph)3ing the vocabul:try of "abstract" (or "function space") anal)sis. Thus let _,

denote the class of 3× I functions

"o (s)

u. (s) ,

% (s)

O<s<L

wp

such that Uo(-). uo(' ), Uo'(. ), Uo"(.); llo('), /,/0('), //0'('), //0"('); I.Ii41('), LIlil('), llv('),

belong to k:(O, I+), and satisfy the boundary conditions:

uo(O) = uo(O) = 0

uo(O) = uo(O) = 0

uv(O) = 0.

Introduce the inner product in 7. defined by: for any two elements f, g in _, where

all

f(, )

Yo(s)

./_,(.,)

g(,) =

go (s)

r,,o (s)

,% (s)

jIf, gl = (fo(s),% (') + f,("),%(") + fv("),_'_,(")) ,Is + fo(L),%(L)

E j . -, fo(L),%(13 , fv(.}gv(L) , fci(L)g#(l.) + /];(I.),_,_;(L} (2.6)

The space completed using this inner product will be desi_:nated _. h is no! diflicuh to see

that

= L2[O, LI _ × Rs.
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It is convenient io use the notation for any element x in :R:

"0 (')

u 0 (')

u_,(.)

X = b 1

b2

b3

b4

b5

(2.7)

such that for .r in 7,'

/'i = uo (g)

t,: = % (L)

b3 = uo(L) (2.8)

ha = ulj(L)

/)5 = uv (L) .

Note that the bt,undal 3' (at L ',,.here the controls are) is pan of the state. Define now the

linear operalor A mapping 2- into .'g by:

% (')

u, (')

uv(')

x = uo (L) ;

uo(L)

Ug (L)

u_ (L)

uv (L)

AX =

El o uo' "'(.)

El o u_j'"'(')

-GI v u v'(')

-El o uo"( L)

-El 0ud"( L)

El o uo'(L)

El o u_'(L)

GI v uv (L)

l'lzus defined, A i_, self-adjoint and nonnegative detinile with ctomairl dense in 7f:

(2.9)

[Aa, y] = [.r, Ay] l\wx, yin:1%.

lAx, r] > 0 for.tin2,.

Then as in [ll we can combine (2.1), (2.2), t-.. ), (2.4) to yield the abstract "wave equation"

in }(:

.lIi(t) i ,.l_(t) , Bu(t)- 0 (2.10)
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where u(t) represents the control:

Fy(t) '

u(t) = F,(t) ]
M4(t)

and B is the linear (finite-dimensional) operator mapping R 5 into _ by:

(2.11)

Bu = x • x =

0

0
s

0

u

(2.12)

and M is the "inertia" operator:

Mx = y; y =

pA u o

pAuo

P/vuv

mabl

m a b2

b3

14 b4

b5

(2.13)

Note that M is positive definite and has a bounded inverse. It is convenient to use the

notation:

y

pAu o

pAu o

P lwu v

M b h

(2.14)

where M b is thus a 5×5 matrix, nonsingular and positive definite. In particular, we have for

the adjoint B* mapping _ into R _'

B*x = b

B*Mx = Mbb.

We shall call b the "boundary" vector or boundary "trace."

Next we need to take into account the random noise input associated with the controll Let

N.,.(.) denote white Gaussian noise with (diagonal) spectral density matrix
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dsl

where / denotes the 5x5 Identity matrix. Then we modify (2.10) to read

M_(t) + Ax(t) + Bu(t) + BNs(t ) = 0. (2.15)

We are assuming co-located rate sensors. Let v(t) denote the sensor ouptut. Then we can

model it as:

v(t) = B*k(t) + No(t) (2.16)

where No(') is w'hite Gaussian with spectral density

dol.

The equations (2.15), (2.16) together yield the state space or abstract formulation that

we shall employ from now on.

In concluding this section, let us note the essential properties of A: (i) the resolvent of A

is compact so that A has a pure point spectrum (ii) zero is in the resolvent set of A -- we

consider only the "flexible body" modes.

3. Formulation of Stochastic Regulator Problem

The stabilization (or stability augmentation) problem is to make (if possible) the

"boundary" displacements and displacement nites zero using controls which must be based on

avilable sensor data. Here the specific version of the problem we shall consider is to minimize

the steady state "boundary" rates: minimize in other words the time average

T
1

lira _f Ni:,(t)ll2 dt (3.1)
T--*_ 0

where

b(t) = B*x(t),

b(t) . e*_(t).

We shall also impose a soft constraint on the controls and thus consider the problem of

minimizing
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I i m f I!/_(/)112dt + Ilu(t)ll2 (3.2)
T-4_ 0 0

for fixed _. > 0. This can be seen to be a special case of the stochastic regulator problem in a

Hilbert space setting treated in 121. For this purpose we first rewrite (2.15) as a first order (in

time) equation. Define the state

Y(t) = I x(t) [k(0 " (3.3)

Y(.) is thus an element of the cross product space _×_. On this space we define, following

(1), a new norm -- the "energy" norm -- defined on the cross product space:

Y,(n'_) x _, _(',,_) denoting domain of n_, (3.4)

'V'i2 = (x'+tAVl,'_fA'Yl) + [M'v2,Y2] (3.5)
ll+l, E .

where

and

Yt _ domain of_ .

Here \_A- is the unique positive (self-adjoint and nonnegative definite) square root of A, and as

is well known the domain of "_,_ includes that of A. The cross product space is actually

complete under this norm, because zero belongs to the reolvent set of A and hence also to the

resolvent set uf ',"A. We .,,hall denote the space by _r" The requirement that the lirst

component should belong to the domain of _ will cause no problem for us in what follows.

Note that calculation of n_ is possible using the Balakrishnan formula 161 but will involve the

boundary "trace" and can be tedious.

We can now proceed to the reformulation of (2.15) as a Cauchy problem in "state space"

form in _ (see 11]). Thus let

i0,1_/ = (3.6)
..... -M- t A 0
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Then with

Bu
(3.7)

(2.15) can be written:

Y(t) = Ix(t) I:t(t) (3.8)

t'(t) = o4r(t) + _Bu(t) + 23Ns(t)

where Ns(t ) is white Gaussian noise with spectral density

(3.9)

It is easily verified that

where

Also:

Let

41.

_*Y = -B'Y2 (3.10)

[Y'JY =

)'2

E 0 -1 ],,-4* = (3.11)
M-IA 0 "

Then we can write (2.16) in the form

C = -_*. (3.12)

v(t) = CY(t) + No(t). (3.13)

Finally, the criterion (3.2) now becomes

lira , [_*Y(t)ll 2'It + _ llu(t)llz dt . (3.14)
T ,_ 0

In this fonnulation, we may now invoke Theorem 6.9.1 in [2], where we need to verify

the stabilizability requirement imposed therein. For tiffs purl:x)se we prove lirst:
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Theorem 3.1. (_4 ~ _) is Controllable.

Proof. We need the following Lemma.

Lemma. Let {¢_ } denote the eigenvectors of A corresponding to the eigenvalues {_.k};

A¢_ = kkMCk, (3.15)

[MCk,¢k] = 1.

Then the corresponding boundary trace

B*¢ k _: 0 for any k . (3.16)

Proof. Suppose

for some k. Then

Since

we have:

Let

The n

B*¢ k = 0

B*(M¢ k) = O.

A, k = _kM¢k

B*(Ad_k ) = O .

u o

Uo

t_k -_. UW

B*¢ k

"o(L) = .;(L) = ug(L)

uo(L) = u_(L) = u_'(L)

u v(L) = u(_(L) = 0

= u_"(L)= o

= ud"(L)= o
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and of course

In addition:

"o(0) = u_(0) = 0

uf_(0) - u_(0) = 0.

EIo Uo'"(s) = _.ku, (s) , 0 < s < L

Elou_'"(s) = _.kuo(s) , 0 < s < L

,,

GI vu v(s) = -_.kuv(s) , O < s < L.

Since the conditions include those of a beam clamped at both ends, it follows that %(.), u0(. )

must be identically zero. Similarly the boundary conditions

along with

u(,(L) = 0

u_:(O) = u v(L) = 0

are sufficient to make uv (.) identically zero. Hence B*_k cannot be zero, for any k.

Getting back now to the Theorem, let J.(t), t > O, denote the semigroup generated by d.

Then if (_ - _) is not controllable, there must be a nonzero element, say Z, in _ such that

[Z, Z(t)_u]_. = 0, t > 0 (3.17)

for every u in R 5. Because A has a compact resolvent, so does .d and in fact (see also [4]):

(3.19)

where

O)k = \K

are orthonorrnalized eigenvectors of d. Let P, denote the projection operator corresponding

to the space spanned by Igk, _. Then



J_.J(t)_l k = eim kl_k

--itO

j.(t)_ k = e kt_llk

J.(t)P k = P_J.(t)P k .

Also, the {_/k, _ } provide an orthonormal basis in _n and

J./(t)_Bu = __.J.(t)Pk_u •
k

We note that {_k, _k} is an orthonormal basis for Pk_fe. Since

I °_u = 1
-M- Bu

it follows that

where

i
Pk_3u = -_ Iu, b_] (qlk - _k)

(3.20)

(3.21)

(3.22)

He nce

i ei to - ito k tZ(t)Pk_u = _ It,, b,tl[ ktV,_ - e _k]
x2

= lu, bki
-,/2 ( sin % t )¢k ]

(3.23)
I

Hence

[Z, J_(t)Pk_ul v = -_ [u, bk l([Mdp _, zll0:)_ sin o_kt + [Md_k, zz]mk cos C0kt) (3.24)

whe re

Iz'lZ =

g2

It follows from (3.17) and (3.24) thai

0 = [u, bkllzt, M%l = [u, bkllz2, MCk] , for every k.

Since bk ¢ 0 for any k, and u is arbitrary, it follows that

0 = [z_, M_kl = [7-2,Md_kl



-12-

or that

which is a contradiction.

Z-, 0

Remark. We may note that while

we do have that

In fact, from

where the left side

and the right side

It follows in particular that

B*_ _: 0 for any k,

Ilbklt -- tlB*_kll --* 0 as k _ 0,,

_(l[_u, _kltrl 2 + I[_u, _klEI 2)
1

[M-blu, u]

= ]_[[u, b_ll 2 •
I

_b _,II _112 <
1

The result (3.25) has been explored numerically by Taylor and Naidu in 131.

(3.25)

(3.26)

Theorem 3.2. Let Zb(t), t > 0, denote the semigroup generated by

(_ - _2_*) .

Then

[[Zb(t)YIIE _ 0 as t-4oo

for every Y. In other words the semigroup Ab(t) is strongly stable.

(3.27)
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Proof Follows from the general result of this kind due to Benchimol (see [2]) as a

consequence of the fact that d has a compact reolvent, (sl ~ _) is controllable and sl is

dissipalivc.

Theorem 3.2 is adequate to satisfy the stabilizability conditions requirement of

Theorem 6.9.1 in 12]. Applying that Theorem, we note that the optimal control that minimizes

(3.14) is given by

where

and

Uo(t) = - k (3.28)

_'(t) = [sl-Pf_3[B*-_3_23_Pc]_'(t)-Pfdol_v(t) (3.29)

The corresponding (minimal) value of (3.14) is

Tr. _*P! PcPI-_B
Tr. _Pf_B + do (3.32)

We are fortunate that we can solve (3.30) and (3.31) exactly. In fact it is readily

verified that

_'(0) can be chosen arbitrarily.

Here Pc is the unique self-adjoint solution of algebraic Riccati equation

0 = [Pc.Y, SlYIr + [stY, PcY] E + [_*Y, _*Y] - [_B*PcY, _B*PcY] , (3.30)

Y _ T_(Sl)

and similarly, Pf is the unique self-adjoint solution of

o = [P_Y,_*YlE + [.a*r, e_rl E + [a_*v, _3*r] - l_*p_r, a-o_3*_'_v] (3.3_)
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and that

He nce

and

where

Pc = '_-_ I

Uo(t) = _ (3.33)

M

_(t) = (d - ]t_'_*) Y(t) - 4d_'- _v(t)

Correspondingly, (3.32) becomes:

(3.34)

, 1
"_d_do + ---_. (3.35)

"4-dsd0 + q-k ds . (3.36)

We note that the semigroup £r(t), t > 0, generated by (d - y_J_*) is strongly stable. We have

thus obtained a complete closed-form solution of the stochastic regulator problem considered

herein.

4. Optimal Compensator Transfer Function

In this section we shall study the problem of determining the compensator transfer

function corresponding to the optimal control law (3.33). Strictly speaking (3.34) holds only in

the weak sense (see [2]), since v(t) contains white noise and is not differentiable. Hence we

must replace (3.34) by

0

We may setf'(O)= O.Then we have:

Uo(t) =

+ £,t(t) 17"(0). (4.1)

!

f _*Z7(t - O)_/v(O) do",
o

(4.2)
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definingthecompensatorinput-outputrelation.Let

W(t) = _3*J_.l(t)_ , t > 0 (4.3)

denote the 5x5 matrix weighting function. Then we need to calculate the Laplace transform:

e _ JS_t(t)_Bdt, Re. s > 0. (4.4)
0

The integral is absolutely convergent for Re. s > 0, since

/l_*Zy(t)_ll _ 0 as t_oo (4.5)

because the semigroup Z./(.) is strongly stable. The Laplace transform

a,o

f e-t_tJ_(t)Y dt = (p.l - (d - y_..j].))-I , p. > 0 (4.6)
0

is usually denoted

_l.t, d - "y_2_*)

and called the "resolvent" of the semigroup (see [2]). (d - "y_*) has a pure point spectrum

-- or eigenvalue spectrum. To calculate the eigenvalues we need to solve:

(d-Y_2_*)h° = 2_W; h° = I q_'IO2

yielding:

_.2MOl + AO l + _yBB*O 1 = 0 '_

Jq)2 = LO1
(4.7)

2_ MoOk

and let us normalize so that

+ AO k + )_yBB*dP k = 0 (4.8)

[MO k,O k] = 1 . (4.9)

These O k should of course be distinguished from those in (3.15)). Let us note that the {Ok}

Let {k k } denote the eigenvalues, k = 1..... in order of increasing lkkl. Let, correspondingly,
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arenot orthogonal. We shall call {_-k} the closed-loop mode frequencies and {O k } the closed-

loop mode shapes. The closed-loop mode frequencies and mode shapes are complex valued.

Let

a k = Re. (_'k); 03_ =Im.(_.k).

Then, taking inner products with respect to • k in (4.8) we have:

Let

X2 + [AOk, Ok] + X(_'IIB*O, II2 -- 0. (4.10)

/_j, = Tr.O k = B*O k,

We of course assume that y is "small" in the sense that

_'ll/_kli" << [AOk, Ok].

Then

03k = 4[AOk, Oj,] - _[[/_kll4
4 _k, Ok]

(4.11)

Consistent with the small y assumptions, we may approximate

[AO k, O_ ] by [A¢k, *_ ] = c0_

/_k = B'Ok by b k = B*qbk

using the open-loop (undamped) modes. In this way we get a first approximation to the

eigenvalues _-k as

YIIbk 112
_-k --- (appr.) 2 + io k . (4.12)

We may also get a corresponding approximation to • k as a perturbation of Ck. We omit the

details. The main point is that • k will be complex with an approximation of the form

• k = q5k + i_kA k . (4.13)
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We can now slate:

Lemma 4.1. (i) /_k _: 0 for any k

(ii) II/;kl[_ 0 as k + oo.

Proof. Let

_IJk w

(z k

(these h°k should be distinguished from _k in (3.18)) where

otk = _[AOk, • k] + ILkl2.

Then q'k is the eigenvector corresponding to Z,k. Since

YllZ_kll2
0 k = 2

we shall use the strong stability property of the semigroup Zv(. ) to prove that

Ck _ 0 foranyk.

This is immediate from:

Hence

tlZy(0Wkll = e_kt -4 0 as t_o,,

G k < 0, '

proving (i). To prove (ii) we may show that the {Ok} are linearly independent in _ by

examining the function space part of (4.8). Here rather we shall use what we already have.

Thus since the {q'k } corresponding to distinct eigenvalues are linearly independent, we know

that

l[_*q",ll -4 0 as k -4,0
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Now

[t_*_PkII -

and

He nee

2
lA+k, +kl = t-'3k + O_ = IZ,kl2 .

Itgklt -_ O.

Note in particular that the closed-loop modes _k approximate the clamped-clamped modes

as k -4 o_, just as the open-loop mode shapes ¢k do.

Next let us note that _k is an eigenvalue if Ek is, and has eigenvector hu--k. Since

_(la; _ - 75_*)q' k
= _ - _,k ' (4.14)

for any Y in _tL., with the representation:

Y = _(akVk + bkVk) (4.15)
1

we have:

_(B ; _4- "t_2_*) Y =
£(akl B _'k --Akb*]

_-- Vk + --k-- _k • (4.16)
tx

We want to specialize to

Y = _ll .

Also we assume that _u is in the (closed) subspace spanned by the {q'k }, so that (4.15) holds.

In physical terms, this is equivalent to saying that we need not consider responses in which no

modes are excited. We can actually prove this by assuming that there is some (negligibly

small) strictly proportional damping so that the semigroup Z(.) is analytic, implying then the

same for Y_,_,(.)-- see [4].

Since complex-valued functions and vectors are involved, we now fix our notation for

the inner product: in CS: with asterisk denoting conjugate transpose:
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Sinceu is real:

[U, V] ---- U*V .

bar denoting conjugate complex. Hence we can write

i [_[u, ck]_Fk + _[u,_-k]_,l.

Taking inner products with respect to Wj and qJ/respectively we have:

These equations can be submerged into the form

(4.17)

_;here 2: are 2>:5 matrices:

and Mkj is 2x2 defined by

1
Mkj =

We can solve (4 18) in the form:

i jhj  jbj I

I've, %1E ['v_, YjlE
i

I%, '_']IF. I%, %1_:

(4.18)

I

for appropriate 2x2 matrices, 5k, fihd hence finally We get

• I [([u, cklq-'j,

' (4.20)
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andhence:

_*_l.t, d- y2_*):_ = Re.]_ _'J_kc_'

kkbk:_

+ (4.21)

where we note that from

j_,,ll_= z I., + z t., :,IG . (fu,x,7,,c_uj
1 1 E

we have that:

Hence finally we obtain that the transfer function (Laplace transform) of the compensator has

the form

(4.23)

From (4.23) we can readily infer the structure of the compensator: we have a series of band

pass filters centered at the closed-loop mode frequencies o3k, the Q-factor being determined by

the damping ]ok{. The filter amplitudes decrease to zero as the mode number increases, by

virtue of (4.22). In the limiting case as 1o,_1-+ 0, the compensator consists of line-filters

at the open-loop mode frequences (ink/2_).

As a first approximation to the solution of (4.18), we may take:

(4.24)

yielding Ik)r the compensator transfer function:

-, r6_ :
l(.-x,)

l:d;l'
+(:: (4.25)

and a still further approximation by taking



yielding

-- _ 2 _' llbj, llZ)bkb_±  ,Id, *
(4.26)

Let us note that in (4.26) we have an approximation for the compensator transfer function

(Laplace transform) which is quite general -- independent of the particular flexible system

configuration. Only the traces of the open-loop mode shapes on the control sensor boundary

locations are required -- as well of course as the mode frequencies. In particular we note that

numerical calculations of {b_} for the SCOLE flight article have been reported by $. Joshi [5].

We can readily see from (4.23) that the feedback amplitude is inversely proportional to q'_:

the smaller the ;L the larger the control effort, as we expect. Also it increases with the actuator

noise spectral density and decreases as the sensor noise increases, again as we should expect.

But the point is that the precise dependence has been determined in (4.23).
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